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THOMAS-FERMI THEORY OF AN 
INHOMOGENEOUS ELECTRON LIQUID 

GENERALIZED TO INCORPORATE 
DENSITY GRADIENTS 

C. AMOVILLI", N. H. MARCH", T. G. SCHMALZ' 
and D. J .  KLEINb 

"Dipurtin~c~nto di Chimica e Chiinicu Industriule, Uniimritd (ti Pisu, Via 
Risorginiento 35, 56 126 Pisa. Italy; 

'Depurtmmt of Marine Science, Texas A & M  University at Galveston, Mitchell 
Campus, Galveston, Texas, U S .  A .  

Motivated by exact results for many closed shells in ii bare Coulomb field, a 
generalization of the Thomas-Fcrmi statistical model is proposed. This genernlization 
includes density gradients in the density-potential relation, and ofl'ers the possibility of 
avoiding the singiilarity (of the original method) in the density at an atomic nucleus and 
of embodying Kato's theorem. 

Kejworu's: Electron liquid; Thomas-Fermi theory; dcnsity gr:idient 

1. BACKGROUND 

The original Thomas-Fermi (TF) statistical theory [ I ] ,  the forerunner 
of modern density functional theory (DFT) [2], is based on a density- 
potential relation of the form 

with p( F) the ground-state electron density in the inhomogeneous 
electron liquid generated by the one-body potential energy V ( 7 ) .  The 
quantity p appearing in eqn(1) is the chemical potential of the 
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92 C .  A M O V l L L l  ( ' f  rrl. 

inhomogeneous electron cloud. I t  is constant throughout the entire 
electron distribution, and in DFT is written formally as the sum of 
kinetic and potential contributions, each of which depends on the 
spatial position 7 in the electronic charge cloud. I f  T,  denotes the 
single-particle kinetic energy[2], the Euler equation of D F T  is 
customarily written 

In a complete theory of atoms and molecules, V(?)  is the sum of a 
Hartree potential energy V I f ( F )  generated by the nuclei together with 
the electronic charge density p ( 7 )  from classical electrostatics, and an 
exchange plus correlation potential Vvc(Y) .  In the same spirit as the 
formal kinetic energy functional derivative 6T,/hp(7) already dis- 
played in eqn(2) V,, (7) is often written 

As yet, neither TJp] nor the exchange-correlation energy functional 
E,,.[p] is known. However, given an approximate form of Vy(.(F')(eg. 
the so-called local density approximation), 6T,/hp(7) can be bypassed 
by solving one-electron Schrodinger equations, the so-called Slater- 
Kohn-Sham (SKS) equations [3,4], with the approximate potential 
energy V ( 7 )  = V H ( ~ )  + V,,c(7). 

Recently, Holas and March[S] have presented an exact expression 
for VvC(F)  in terms of low-order density matrices (DMS), both the 
fully interacting one and two DMS and the analogues (non- 
interacting) calculated from SKS wave functions being involved. In 
lowest order, in which the interacting DMS are replaced by their non- 
interacting analogues, an approximation to the exchange potential 
energy was obtained which was identical with the result of the work 
formalism of Harbola and Sahni[6]. Their result was in the form of a 
(path-dependent) line integral. The full theory [5] of V,, (7) has been 
used subsequently by Levy and March[7] to exhibit the 'kinetic 
correction' to the Harbola-Sahni exchange-only result which restores 
path independence. Comparing the above approach with the formal 
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result ( 3 ) ,  we conclude that the functional differentiation has in some 
sense been replaced by a line integral. 

The above considerations have prompted us to return to the 
functional derivative of the single-particle kinetic energy T,  in eqn(2). 
Then, for large numbers of electrons in atoms and molecules, on which 
regime all attention focussed below, it  is natural to take the original 
TF theory as starting point. Furthermore, though the theory given 
below is approximate, we shall invoke some exact relations for closed 
shells in a bare Coulomb field. Thus, we turn immediately to 
summarize exact results for this model problem. 

2. KINETIC ENERGY FOR CLOSED SHELLS 
IN BARE COULOMB FIELD 

In a recent study, Amovilli and March [8] have studied the kinetic 
energy density t N ( r )  for N closed shells in hydrogen-like atom in terms 
of the ground-state density p ~ ( r )  and its derivatives, and the Coulomb 
potential energy - Z / r .  Their result takes the form 

which can be viewed as a direrential form of the virial theorem [XI. 
We note first of all that if we neglect gradients of [IN relative to the 

Zpn/ term in eqn(4), then we recover a relation valid in the original 
form of density functional theory (DFT): namely the T F  statistical 
method [l]. 

In this method one has 

and hence 

Using the T F  density-potential relation( l ) ,  eqn(6) is contained in eqn 
(4) when pxr  and pin/ are neglected. 
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94 C. AMOVlLLl c’t al. 

We note further that eqn(6) can be written in a form motivated by 
density functional theory, as discussed, for example, in the book of 
Parr and Yang [ 2 ] ,  

where the total kinetic energy TTF = S t 7 ~ d F + =  c h  

Below, we shall continue to  insist on the applicability of eqn(7), even 
though we shall retain the gradient terms in eqn(4). Invoking the 
general form (21, the Euler equation in DFT, we can combine eqns(2), 
(4) and (7) t o  reach the result for a bare Coulomb field: 

3 3 2  
( / , , + “ = x p I ’ ’ - -  1 4 9  p -- 2r2P. 

We must stress that although we have retained the exact form of 
eqn(4) in arriving at eqn(8), the ‘statistically motivated’ form (7) has 
also been retained, which must be expected to involve approximations, 
even in the limit of large numbers of electrons (compare regime of 
Bohr’s correspondence Principle). Therefore, let us study at this stage 
the forms of solution of eqn(8) at small and large distances from the 
nucleus. 

2.1. Large Y Solution of eqn(8) for Z = I and p = 0 

One useful check of the accuracy of eqn(8) is to bring it into contact 
with the work of Heilmann and Lieb(HL)[9] (see also Appendix 1 
below). These authors calculated pn/(r) in eqn(4) in the limit in which 
the number of closed shells tends to infinity and the chemical potential 
p tends to zero. For Z =  1, their result at large I’ takes the form 

Since p = 0, the LHS of eqn(8) is proportional to I’ - 7 / 2  at large I’. On 
the RHS, the first two terms are readily shown from eqn(9) to be of 
O(r9 / ’ )  at large r .  The final term is equal to the LHS, without, 
however, the need to fix A ,  the value of which is known from the study 
of H L  and is also recorded in eqn(9). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



INHOMOGENEOUS ELECTRON LIQUID 95 

2.2. Small P Solution: Kato’s Theorem and Beyond 

One of the major problems associated with the T F  density-potential 
relation ( I )  is that near an atomic nucleus the density O - % ~ ( I ’ )  diverges. 
This is, of course, because of the ’local’ character of eqn(l), the 
potential at I‘= 0 determining the density there. 

We have therefore investigated the solution of eqn(8). still for 11 = O  
but now for general Z ,  by Taylor expansion of ph-( r )  around I‘ = 0. The 
following solution is readily generated: 

The term in r is easily interpreted: i t  reflects Kato’s theorem [lo]. or 
equivalently the electron-nuclear cusp condition: 

While i t  is satisfactory that eqn(8) embodies this result for the bare 
Coulomb potential energy -Zjr. i t  will presumably need numerical 
solution of eqn(8) to investigate whether the Taylor expansion (10) 
valid at small I’ can be precisely matched to the HL large r asymtotic 
form (9) corresponding to Z = 1 and p = 0. 

The interpolation approximation p(v)  = /,((I)[ 1 + (4Z/3)r] ’ ’ repro- 
duces the first three terms of the small I’ series ( lo) ,  and for Z =  1 
relates p(0)  to A in eqn(9). 

However. the fact that there are physically acceptable solutions of 
eqn(8) at small and at large I’ for the bare Coulomb field has 
encouraged us to generalize this equation to apply when the bare 
Coulomb potential is replaced by the appropriate Hartree self- 
consistent field form. 

3. GENERALIZATION OF SELF-CONSISTENT TF ATOM 

We turn from the bare Coulomb field model of section 2 to the 
analogous treatment which generalizes the self-consistent T F  atom. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



96 C. AMOVILLI L’/ ul. 

Let us put -1) = p + Zjr in eqn(8) which becomes 

If we neglect the RHS, one can integrate eqn(l2) to regain the TF 
density-potential (l), which can be applied both to the bare Coulomb 
field model and to the self-consistent TF atom. 

Returning to eqn(12) as it  stands, one can rewrite i t  as a first-order 
linear differential equation for V(r): 

Using the integrating factor p -2’3, one readily obtains 

Integrating eqn( 14) yields the desired result 

Hence, from the Euler eqn(2), one has for the functional derivative of 
the single-particle kinetic energy 

As with V,, = 6E,,/6p(r‘) discussed earlier, it may be noted that a line 
integral is again involved in eqn( 16), when correcting the TF method 
for atoms. 

Next we impose Hartree self-consistency on the above atomic 
theory, via Poisson’s equation 
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o r  in spherical symmetry 

Simultaneous solution of eqns(l3) and (18) should yield a self- 
consistent potential energy V and corresponding ground-state density 
p transcending the original self-consistent TF atom. The  boundary 
conditions evidently include I/ and p both tending to zero at  infinity, 
V-t-Zjr as r+O, and if possible the Kato result ( 1  1) a t  r = O  on the 
density p .  

3.1. Self-consistency Imposed on 6 T,/Gp(?) 

Returning to the general Euler eqn.(2) of DFT, we note that for 
Hartree self-consistency embodied in the Poisson equation (1  7) 

While eqn(l9) is formally exact if we neglect 
potential, which is asymptotically correct in 

the exchange-correlation 
sufficiently heavy atoms 

treated by non-relativistic Schrodinger theory, we shall below combine 
this equation with the approximate functional derivative of the single- 
particle kinetic energy T, given in eqn( 16). This is the approximation 
a t  the heart of the present study. Forming from eqn( 16) the derivatives 
0/3r [6TY/6p(7) ]  and a 2 / 3 r 2 [ h T , / S p ( 7 ) ]  required in eqn( 19), one finds 
after some calculation 

Thus, in the approximate self-consistent atomic theory a t  the 
symmetrized Hartree level, one has achieved a basic aim of DFT in 
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98 C. AMOVILLI (’ I  (11. 

expressing ST,/6p(r‘) solely in terms of p(7)  and its derivatives (up to 
and including p””in this approximation). 

Alternatively, if one replaces ST, /Gp(r‘ )  in eqn(20) by (p- V )  from 
the Euler equation(2), one has a density potential relation for heavy 
atoms which has been designed to transcend the T F  relation ( I ) .  

4. SUMMARY 

Equation (4) is an exact result relating kinetic energy t ( r )  and electron 
density p(r ‘ )  for an arbitrary number N of closed shells in a bare 
Coulomb field. Combining this result (4) with the ‘statistically 
motivated’ approximation (7). one is led to the density-potential 
relation (8) for closed shells in a bare Coulomb potential energy - Z / r .  
Eqn(8) has been solved in the limit p+O at small (eqn( 10)) and large 
(eqn(9)) r .  The larger result is consistent with the exact study of p,(r) by 
HL, while the small r solution correctly embodies Kato’s theorem. 

From eqn(8), an approximate expression (16) for the functional 
derivative of the single-particle kinetic energy ST,/bp(r‘)  has been 
obtained (see also Appendix 2), which transcends the T F  result by 
including density gradients. Whereas eqn(8) involves a line integral 
when one invokes Hartree self-consistency through Poisson’s equa- 
tion, one reaches the explicit, though somewhat complicated. form 
(20) for hT,/bp(r ’) .  Probably therefore the simplest generalization for 
future numerical study of the self-consistent T F  atom is to solve 
simultaneously eqns( 13) and ( 1  8). 
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APPENDIX 1. SlNGULARlTlES IN THE ATOMIC 
SCATTERING FACTOR f , (k  ) 

H L  give the integral representation for the hydrogenic density, for 
z= 1,  p y ( r ) ,  as 

Here J 3  is a Bessel function and 

$(s) = [s/( 1 - c > - y  (A.3) 

while 

The asymptotic expansion of eqn(A.l)  is also known from the study of 
H L: 

H L  give the first few coefficients in eqn(A.4). I t  is relevant to note that 
a second integral representation of p L ( r )  is given by H L  in their 
equation (2.14) [9]. 
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One of the noteworthy points about the asymptotic expansion (A.4) 
of the exact form (A.l)  of pm(r) is that it can, at  least in principle, be 
used to define the singularities of the atomic scattering factor &(k).  
defined as usual by the Fourier transform of p X ( r ) :  

As k-0, evidently f K ( k )  must diverge, since p Y ( r )  integrated over all 
space must diverge. This is due to the slow fall-off given by equation(9) 
at  sufficiently large r ,  and leads to the form 

B I 
l imfx(k) =- : B = -  
k-0‘ k317 3=312 

Also, at  large 1’, , /m(k )  cx k-4, again from Fourier transform ‘singular- 
ity’ theory, where the coefficient is determined from Kato’s theorem by 
the product Zp(0). 

These results are from singular behaviour at k=O and 1’=0. The 
presence of the terms s i n ( m ) r - 5 / ’  and c o s ( m ) r - 7  in eqn (A.4) 
herald further singularities of f,(k) in k’ space, probably away from 
k‘= 0. The approximate equation(8) for p = 0 reflects faithfully the 
k = 0 singularity but not any away from k‘= 0. 

APPENDIX 2. PROPOSED RELATION BETWEEN ST/Sp(7 )  
AND DERIVATIVE t ’ ( r )  OF KINETIC ENERGY DENSITY t ( v )  

Let us write the kinetic energy functional T [p]  in the form 

T[p] = Lx t l r , f ( p ; r )  lx ds H(s,v)g(p,p’ , / - , ” ,p ’ ’ ’ ,p ’ ’ ’ ; .s)  

where H(u, s) = 1 for I‘ > s ,  and is zero for I’ < s and ./ ( p  ; 1’) 

which is motivated by the work of Amovilli and  March [S]. 
Then the functional derivative bTlcSp(7)takes the form 
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INHOMOGENEOUS ELECTRON LIQUID 101 

where G is defined by 

A 2. I .  Transcending 'Statistically Motivated' Approximation Relating 
G T / S p ( r ' )  and r ' ( r )  

Writing 

(A.lO) 

one finds from eqn(A.7) 

For the Coulomb field case, and an arbitrary number of closed shells, 
t ' ( r )  is known explicitly i n  terms of p, its derivatives and the potential 
energy - 2 i r .  But in addition, one can insert in eqn(A.l I )  ( p + Z j r )  for 
the functional derivative h T / h p ( ? ) ,  Hence one is led to an integro- 
ditrerential equation for the density p( 7 ) .  This presumably transcends 
the approximate differential equation of the main text. I n  particular. 
eqn(A.11) should reproduce well the H L  density obtained in the limit 
when the number of closed shells tends to infinity. 

A 2.2. One-level Case 

I n  contrast to the approximate development above, the one-level case 
can be treated exactly. Thus 

(A.12) 
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and hence the kinetic energy density f (now proportional to (g$)2 in 
wave function language) is given by 

Thus, in spherically symmetric problems 

ti2 p’2 
t ( r )  = --, 

8 m  p 

and hence its derivative is given by 

or 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

But from eqn(8) 

__- 

P ‘ P  

6T h2 

(A. 17) 

Using eqn(A. 16) in eqn(A. 17) yields in this one-level example with 
spherical symmetry: 

(A.18) 

Using eqn(A.14), one can eliminate the last term in eqn(A.18) in 
favour o f t .  to find 

t‘ 4t - 6T 
6p(r‘) p’ rp’. (A.19) 
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Combining eqn(A. 19) with the Euler equation 

yields 

p” L/, ~ V( r ) ]  - 1’ + - [ 4 i I  

(A.20) 

(A.21) 

Of course, eqn(A.21) must be equivalent to the Schrodinger equation 
for the density amplitude p”2 in this one-level example. 

APPENDIX 3. KINETIC ENERGY TENSOR 
FOR COULOMB FIELD 

A further result of the present study concerns the kinetic energy tensor 
Tji. In a general central field, we hpve 

(A.22) 

where t ( r )  is the trace of T,, (the kinetic energy density tensor) and F ( r )  
is a further function entering through a null-trace tensor. 

Applying the differential form of the virial theorem, namely 

we obtain 

(A.23) 

(A.24) 

Using the explicit result for t’ in a Coulomb field, one finds an 
equation for F’, namely 

(A.25) 

which, on integration, completes the determination of the kinetic 
energy tensor T,, in eqn(A.22) for the case of the bare Coulomb field. 
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